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Abstract   In the scientific literature, the debate about how define and evaluate seat comfort is still open, but 

three points are not in question [1]: 1. comfort is a construct of a subjective nature; 2. comfort is affected by 

factors of various nature (physical, physiological, psychological); 3.comfort is a reaction to the environment. 

The subjective nature of the comfort experience is universally recognized; any comfort analysis cannot disre-

gard subjective methods (‘directly asking people about how comfortable they are’), which can be regarded as 

the most direct way to detect subjective feelings of comfort and/or discomfort. This paper focuses on the as-

sessment of aircraft seating comfort based on subjective comfort responses collected during laboratory experi-

ments. During each experimental session, participants were asked to express their overall seat comfort percep-

tion and to evaluate specific seat design features. Comfort responses were analyzed with the aim to relate the 

perceived overall seat comfort to some design features, as well as to the user anthropometrical characteristics 

and feelings. The adopted statistical modeling approach is based on generalized linear mixed models. Differ-

ently from the traditional strategies used for the analysis of subjective sitting comfort data (e.g. correlation 

analysis, non-parametric hypothesis tests), the model-based approach allows to investigate and quantify the 

relationship between overall seat comfort and specific seat/user characteristics. The results show that the overall 

comfort perception is significantly influenced by age, lumbar support, height of seat pan and reclining.  
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1 Introduction 

Over the years, commercial air traffic and number of passengers have been constantly increasing and airlines 

are facing a fiercer competition in the international context. Being strictly related to passenger’s satisfaction 

and willingness to pay, comfort improvement has become a major strategic goal for the airline management [1].  

A variety of definitions of passenger comfort have been provided in literature and the scientific debate about 

the main factors impacting on it and the relationship with discomfort is still open [2-9].   

Despite the variety of positions, it is undoubted that comfort perceptions are the outcomes of subjective expe-

riences resulting from a reaction to the environment, influenced by psychological, physiological and physical 

factors. It is thus evident that any comfort analysis cannot disregard subjective methods (‘directly asking people 

about how comfortable they are’), which can be regarded as the most direct way to detect subjective feelings of 

comfort. Large survey studies have been proposed in literature to investigate factors impacting on passenger 

perceptions of comfort/discomfort. Vink et al. [10] analyzed the online trip questionnaires of more than 10000 

passengers in order to identify the critical factors influencing comfort experience during a flight; Amadhpour 

et al. [11] investigated whether the factors underlying the passenger experience of comfort differ from those of 
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discomfort; Bowens et al. [12] surveyed a sample of students about their aircraft sensory experiences and relate 

them to a feeling of comfort or discomfort. Most of the available studies evidence that seat comfort is one of 

the most important factors impacting on passenger on-board experience and a main driver for flight selection 

[13].  In order to attract and retain more passengers, airlines need to distinguish their offer from the competitors 

by providing a better seat comfort experience.  However improve the design of aircraft seat for economic class 

is maybe one of the most difficult challenge for manufacturers since many necessary yet conflicting expecta-

tions and requirements have to be fulfilled (e.g. increase aircraft capacity, improve comfort and living space, 

lighten aircraft and meet safety requirements).  

An effective strategy to collect and process comfort data is crucial to detect the seat design features which 

mostly impact on passenger perceived comfort and thus provide a diagnostic assessment of seat comfort. 

Laboratory experiments allow to collect aircraft seat comfort data by involving potential passengers in simu-

lated flight experiences [e.g. 14-16]. During these experiments, participants reveal information about their "real 

time" comfort feelings (e.g. thermal comfort, noise, cabin comfort, seat comfort, legroom); indeed, they are 

focused on the undertaken experiment rather than recall retrospective flight experiences like it happens for 

surveys. The main advantages of laboratory experiments are that: 1) researchers can control the environment 

under which potential passengers make their evaluations and also can compare different seats and/or aircraft 

environments; 2) a small sample representative of the passenger target population can be considered; 3) it is 

possible to learn more about aircraft seat experience with a significant reduction in costs and time for data 

collection and analysis [17-18]. Besides these advantages, experimenters are well aware that human responses 

in experimental research can be difficult to measure: 1) personal characteristics (e.g. demographic like age, 

nationality, income; physical like body size; physiological  like blood pressure, state of health and general well-

being; psychological linked to memory of previous flights, expectations about future experiences and personal 

preferences) make people experience different levels of comfort (or discomfort) in identical environments [e.g. 

17-22]; 2) different personal experiences can cause people to react to the same situation in different ways and 

makes it difficult to measure the human responses to different stimuli (i.e. experimental treatments); 3) individ-

ual differences in rating scale usage cannot be neglected; 4) the same participants generally test several items 

(e.g. physical products or concepts) and, of course, these evaluations cannot be assumed independent; 5) sub-

jective comfort data are collected via ordered categorical scales, in which scores are meaningful for comparison 

only.  

All these factors and their interdependencies cannot be neglected in order to end up with reliable and robust 

comfort analysis [23]. Specifically, the first three criticisms may impact on the reproducibility and replicability 

of the study and they can be addressed by detailed experimental protocols and appropriate experimental design; 

the last two criticisms, instead, impact on the interpretation of comfort data and can be addressed by a suitable 

statistical modeling.  

The approach adopted in this paper is model-based and accounts for both subjective (user anthropometrical 

characteristics and perceptions) and objective (seat features) covariates.  

Comfort evaluations were modeled through a cumulative link mixed models (CLMMs), an extension of linear 

mixed models for ordinal data whose model specification and interpretation are more complex due to the dis-

crete nature of the data and the nonlinearity in its parameters [24, 26].  The higher computational complexity 

of CLMMs is counterbalanced by the higher flexibility.  Indeed the adopted CLMM accounts for the ordinal 

nature of the overall comfort response as well as the potential correlations among repeated comfort evaluations 

collected in laboratory experiments using a panel of aircraft passengers. 

The paper is organized as follows: an overview of the experiment is provided in Section 2; the adopted data 

analysis strategy is illustrated in Sections 3; the experimental results are reported in Section 4; conclusions are 

drawn in Sections 5. 

2 Overview of the experiment 

The experiment involved 17 participants who tested 5 aircraft seat conditions. The participants were frequent 

flyers of working age with no health problems. The main anthropometric characteristics of participants are 

reported in Table 1. 

During each test session, lasting about 40 minutes, each participant was asked to adopt a fixed posture and 

perform the task of reading/playing a game with the smartphone. At the end of each test session a trained 
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interviewer asked the participant to evaluate the comfort of some seat features using a scale with three ordered 

categories (i.e. 1: low comfort, 2: medium comfort and 3: high comfort) and score the overall seating experience 

using an ordinal scale ranging from 0 (i.e. no comfort) to 8 (i.e. extreme comfort). 

Table 1. Main anthropometric characteristics of participants. 

 Num. 
Age [year] 

[min-max] 

Weight [kg] 

[min-max] 

Height [m] 

[min-max] 

BMI [kg/m2] 

[min-max] 

Males 
9 

[27-41] [73-101.8] [1.60-1.90] [22.8-34.7] 

Mean (SD) 35 (4.4) 88(8.53) 1.77 (0.08) 28.03 (3.46) 

Females 
8 

[26-44] [55-75] [1.55-1.73] [21.15-27.55] 

Mean (SD) 34 (5.9) 66 (5.4) 1.66 (0.05) 24.1 (2.08) 

3 Methods 

Comfort ratings have been analyzed in a regression setting using a set of covariates representing: 1) objective 

seat features (viz. height of seat, height of seat pan, width of seat pan, backrest configuration, height of backrest, 

thick of backrest, reclining); 2) user anthropometrical characteristics (viz. gender, age, BMI); 3) comfort feel-

ings with specific seat features (viz. seat pan, backrest, seat pan padding, backrest padding, lumbar support, 

lumbo-sacral support).  

The cumulative logit model (CLM) is probably the most popular model for ordinal data; it relies on the idea 

that a subjective evaluation expressed on an ordinal scale (e.g. comfort rating) is actually a categorized version 

of an unobservable (latent) continuous variable. The CLM uses the cumulative logits to measure how likely the 

response is to be in a given category or below versus in a category higher than it.  

Let Yi the outcome category selected by subject i for the response variable. Given a set of p covariates, 

x1,..,xk,…xp , the model is defined as follows: 

  
  (1) 

The model in (1) is characterized by (J−1) intercepts and p slopes. Intercepts may differ across the ordinal 

categories, whereas the coefficients βk are the same across the categories, meaning that the effect of xk is as-

sumed to be the same for all the categories of the response Y. The parameter βk measures the impact of xk on Y, 

indeed it can be interpreted as the increase in the log-odd of falling into or below any category associated with 

a one-unit increase in xk holding all the other covariates constant. The parameters αj are the category cut-points 

on a standardized version of the latent variable and satisfy the condition  

      (2) 

An extension of this model that includes random effects as well as fixed effects is the cumulative logit mixed 

model (CLMM). The CLMM allows taking into account both the ordinal nature of the rating scale and the 

potential correlation between ratings provided by the same subject under different conditions (e.g. the same 

subject testing different seats). 

Let Yit denote the overall comfort response over J ordered categories provided by subject i (i = 1, …, 17) for the 

seat t (t = 1, 2, 3, 4, 5); let x1it, x2it ,.., xkit denote a set of k covariates; let ui denote the random effect due to 

subject i for response categories j=1, 2, …, J-1. The cumulative logit mixed model can be formulated as follows 

[25]: 

   (3) 

The random effect ui is assumed normally distributed and centered at zero (ui ~ N (0, σu
2)). 

When a random effect is included in the model, it is important to look at the intra-class correlation (ICC). ICC 

is defined as the correlation of observations within a group and it is a way to look at how similar these within 

cluster observations are to one another.  The ICC is calculated as follow: 

( ) 1 1logit ... ...     1,..., 1i j k k p pP Y j x x x j J     = + + + + + = − 
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  (4) 

where 
  
ŝ

u

2  represents the estimated variance of the random effect, whereas  s
2
 is the residual variance and 

assuming the hypothesis of an underlying standard logistic latent variable it can be calculated as 
 
s 2 = p 2 3 . 

Values of ICC near one indicate that observations within a cluster are very similar to one another, while values 

close to zero indicate that the random effect can be neglected since observations within a group are nearly 

independent [25]. 

4 Results 

In the  adopted CLMM, the participant effect was assumed to be random and fixed effects included anthro-

pometrical characteristics (viz. gender, age, BMI), objective seat features (viz. height of seat, height of seat pan, 

width of seat pan, backrest configuration, height of backrest, thick of backrest, reclining) and comfort feelings 

with specific seat features (viz. seat pan, backrest, seat pan padding, backrest padding, lumbar support, lumbo-

sacral support). 

A forward selection algorithm was applied in order to obtain the optimal model which includes 4 significant 

covariates: age (age; 1: ≤ 35 year; 2:≥ 35 year); lumbar support (lumbsu; 1:low, 2:medium; 3:high); height of 

seat pan (heightsp; 1:low, 2:medium; 3:high) and reclining (rec; 0:yes, 1: no).  

Table 2 reports the estimated parameters βk, k  = 1, 2, 3, 4; the cut-points αj,  j = 1, 2, 3, 4, 5, 6, 7 with asymptotic 

standard error (in parentheses) and AIC index. 

Table 2. CLMM fitted on comfort data. 

Parame-

ters 
           

Estimates 

(Std Er-

ror) 

0.824 

(0.412) 

1.478 

(0.356) 

-0.832 

(0.288) 

-2.01 

(0.474) 

-

4.001 

(1.21) 

-

3.971 

(1.17) 

-

2.623 

(1.15) 

-

1.262 

(1.13) 

0.198 

(1.11) 

1.549 

(1.11) 

3.257 

(1.18) 

AIC 292.42 

 

The coefficient values highlight that overall comfort ratings falling in higher categories are more likely as 

the values for age and comfort of lumbar support increase; instead overall comfort ratings falling in lower 

categories are more likely for seat in reclined position and higher seat pans.  

The = 0.003 for the random effects model implies a low effect due to repeated evaluations provided by 

the same participant (Fig. 1). Moreover, ICC equals to 0.0009 confirms the substantial independency of obser-

vations provided by the same participants for different seat conditions.  

 

Fig. 1. Participant effect. 
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5 Conclusions 

The adopted model based approach allows to investigate the strength and direction of association in subjec-

tive comfort data taking into account their ordinal nature as well as the potential grouping structure of replicated 

observations, overcoming the hypothesis of independency that is often unrealistic in experimental settings.  

The findings highlight that the probability of low overall comfort perceptions is higher for seats in reclined 

position and seat with a higher seat pan; instead the lumbar support has a significant positive impact on the 

overall comfort perception.  It is worthwhile to note that in our study, participant effect resulted negligible; this 

finding could be related to the involvement of a group of expert assessors (i.e. frequent flyers) who may show 

less individual psychological biases in the evaluation task. However, since psychological and physiological 

biases generally affect the subjective assessment in a sample set, assessor’s effect cannot be disregarded.  

Further investigations are necessary in order to check the generalizability of findings outside laboratory set-

ting. 
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